Which number is the odd one out and why?

6

12
15
18

Aims:

- To find out about the KS1 mathematics curriculum
- To understand about development of number
- To increase confidence in how to support children at home

National Curriculum

The curriculum is designed so that pupils explore mathematical ideas in depth.

- Number - number and place value
- Number - addition and subtraction
- Number - Multiplication and division
- Number - fractions
- Measurement
- Geometry: properties of shape
- Geometry - position and direction
- Statistics (Year 2 only)

The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language.
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Concrete:

resources such as cubes, counters and shapes

Pictorial:
pictures, drawings
Abstract:
numbers and symbols

As an example...

Order these numbers:

Can you order the numbers now？

二
九
$\because:$
$\because:$

万

十！

ai
四
六
$\therefore \because$
\vdots
三

Number Magnitude

It is important to develop linear estimation.

It is important to develop linear estimation.

Activities like this help to develop strategies for estimating and children's sense of the relative size of numbers. It is essential that children explain their reasoning.

Estimation activity

Subitising

The process of immediately knowing how many objects are in a small group without needing to count them.

Familiar and structured dot patterns

structured dot patterns
unstructured dot patterns

The part - whole model

It works on the principle that if you know two values out of three in a calculation, you can calculate the missing value using addition or subtraction.

The two parts (3 and 4) combine to make the whole (7).

We can now use the model to find the missing 'part'.

An unknown number and 4 makes 10.
This leads to a missing box calculation:
$\square+4=10$
In other words, algebra.

The National Curriculum requires that children know their number families for all the operations, for example:

$$
\begin{array}{cc}
6+4=10 & 3 \times 7=21 \\
4+6=10 & 7 \times 3=21 \\
10-6=4 & 21 \div 7=3 \\
10-4=6 & 21 \div 3=7
\end{array}
$$

The part-whole model can involve more than two parts.
Here is an example from a possible Year 6 lesson:

Cup activity

I have 3 cups and 10 cubes. I've hidden the same number of cubes under both blue cups and a different number under the red cup. You can only lift one cup. Can you work out what is hiding under the other 2 cups without lifting them?

Place Value

Whole												Decimal Point	Part					
	illio			Billion			Millio			One								
	$\begin{aligned} & \text { © } \\ & \text { 은 } \\ & \underline{\underline{E}} \\ & \stackrel{\rightharpoonup}{\Phi} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { o을 } \end{aligned}$			$\begin{aligned} & \text { 号 } \\ & \text { o흘 } \end{aligned}$				$\begin{aligned} & \text { in } \\ & \text { D } \\ & \text { D } \\ & 5 \\ & \hline \end{aligned}$	$\stackrel{』}{\Phi}$	$\begin{aligned} & \mathscr{\circ} \\ & \stackrel{5}{\circ} \end{aligned}$							\%

Place Value Activity

Calculations

All about me Activity

All about me Activity

Number of children
$9 \div 3=3$

Age
$35+11=46$

Day born on
$20-8=12$

Number of pets
$7 \times 0=0$

Number of siblings

$$
4 \div 4=1
$$

Shoe size
$15-10=5$

Year of birth
$60+12=72$

Door number
$5 \times 6=30$

Fingers Activity

Problem Solving

How can you help at home?

- Involve your child in everyday maths.
- Help to develop your child's sense of number magnitude by talking about the size of numbers. Have a go at estimating.
- Play lots of games, including the ones we've provided and ordinary board games.
- Discuss and celebrate your child's strategies for calculating.
- Celebrate mistakes!
- Don't say you can't do maths. Learn together.
- Don't expect children to understand first time.
- Encourage reasoning and problem solving.

